63 research outputs found

    Adaptive Bound Optimization for Online Convex Optimization

    Full text link
    We introduce a new online convex optimization algorithm that adaptively chooses its regularization function based on the loss functions observed so far. This is in contrast to previous algorithms that use a fixed regularization function such as L2-squared, and modify it only via a single time-dependent parameter. Our algorithm's regret bounds are worst-case optimal, and for certain realistic classes of loss functions they are much better than existing bounds. These bounds are problem-dependent, which means they can exploit the structure of the actual problem instance. Critically, however, our algorithm does not need to know this structure in advance. Rather, we prove competitive guarantees that show the algorithm provides a bound within a constant factor of the best possible bound (of a certain functional form) in hindsight.Comment: Updates to match final COLT versio

    Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations

    Full text link
    We study algorithms for online linear optimization in Hilbert spaces, focusing on the case where the player is unconstrained. We develop a novel characterization of a large class of minimax algorithms, recovering, and even improving, several previous results as immediate corollaries. Moreover, using our tools, we develop an algorithm that provides a regret bound of O(UTlog⁑(UTlog⁑2T+1))\mathcal{O}\Big(U \sqrt{T \log(U \sqrt{T} \log^2 T +1)}\Big), where UU is the L2L_2 norm of an arbitrary comparator and both TT and UU are unknown to the player. This bound is optimal up to log⁑log⁑T\sqrt{\log \log T} terms. When TT is known, we derive an algorithm with an optimal regret bound (up to constant factors). For both the known and unknown TT case, a Normal approximation to the conditional value of the game proves to be the key analysis tool.Comment: Proceedings of the 27th Annual Conference on Learning Theory (COLT 2014
    • …
    corecore